
U S E  O F  S P L I N E S  IN T H E  S O L U T I O N  O F  I N V E R S E  

B O U N D A R Y  P R O B L E M S  O F  H E A T  C O N D U C T I O N  
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A s table  a lgor i thm is p roposed  for  the solution of one-d imens iona l  inverse  boundary p rob l ems  of 
hea t  conduction based  on the solution of the Cauchy p rob lem.  The i n c o r r e c t n e s s  of the p rob l em 
is e l imina ted  by the use  of r egu la r i zed  spl ines .  

I nve r se  boundary p r o b l e m s  of heat  conduction, as  is known [1], belong to the c lass  of i nco r rec t ly  s ta ted 
p r o b l e m s .  A r a t h e r  full su rvey  of the publicat ions on the methods of the i r  solution is contained in [2-3]. In the 
p r e s e n t  r e p o r t  to cons t ruc t  a s table  a lgor i thm for  the solution of inverse  boundary p r o b l e m s  we use  the so lu-  
tion of the Cauchy p rob l em ,  which for  the case of a plate in a l inear  formula t ion  has  the f o r m  [4] 

2 "' x-x* t (f; q; x, ~) =: (2n)! (~) )~ (2n + 1)[ q~") (~) (N = c~), (1) 
n ~ O  r / ~  0 

where  f and q a re  functions of the t e m p e r a t u r e  and hea t  flux, r e spec t ive ly ,  at the point x*. The l a t t e r  a re  a s -  
sumed  to be analyt ical  in the i r  regions  of definition. I t  is e a sy  to show that  in this case  the solution (1) con-  
v e r g e s  uni formly  in a finite region.  Consequent ly,  instabi l i ty  of (1) agains t  smal l  pe r tu rba t ions  of the functions 
f and q is caused only by the di f ferent ia t ion opera to r .  As is known [2], at  points of a body r emote  f r o m  the 
h e a t - t r a n s f e r  sur face  the t e m p e r a t u r e  and heat  flux a re  r ep re sen t ed  by smooth functions. We the re fo re  l imi t  
the sums  in the solution (1) to th ree  t e r m s  (N = 2). Then to obtain a s table  approximate  solution to an inverse  
p rob l em it is sufficient  to de te rmine  s table  a lgor i thms  for  numer i ca l  different iat ion of up to second o r d e r  in-  
clusively.  We will cons t ruc t  the l a t t e r  on the bas i s  of the regu la r iza t ion  method [1] using spline functions.  
Such an approach  was d i scussed  in [5]. In the p r e s e n t  r e p o r t  we propose  a different  regu la r iza t ion  a lgor i thm,  
making it poss ib le  to solve inve r se  p r o b l e m s  of hea t  conduction in va r ious  formula t ions .  

Suppose that  the function gE C2[a, b] on the grid 

r { a = % < ~ , < . . .  < ~ k =  b} 

sa t i s f i e s  the equation 

L g = u, (2) 

where  u is the grid function on w, known with an e r r o r  A = {50, 61 . . . . .  5k}; L is a d i f ferent ia l  ope ra to r  of no 
higher  than second o rde r .  

Le t  F be a se t  of functions gE C2[a, b] sa t is fying the l imi t s  

[L g - -  u[ ~-~ a (3) 

on the grid w. Then,  in accordance  with [1], the r egu la r i zed  solution of the p rob lem of different ia t ion of the 
function g sa t is fying Eq. (2) will  be the e l emen t  ~ which min imizes  the functional 

b 

g][g]= ~ \  dz z ] dr-~min 
g 

It  is shown in [6] that  a cubic spline yie lds  the min imum to the functional ~ in F. in the se t  F. 
the functions 

g (~) ------ S~ (v; T), 

(4) 

Consequently, 
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where the right side is a cubic spline interpolating the grid function v on co, will be subjected to analysis. 

As is known, a cubic spline is determined by a system of linear equations with a three-diagonal matrix, 
for the solution of which a very efficient algorithm was presented in [6]. The latter allows one to successfully 
realize the variational problem (3)-(5) by the method of local variations with respect to v [7]. The calculation 
of the values of the functional t~[g] with allowance for (5) which is required in the process is reduced to the ele- 
mentary summation of squares. 

Any grid function v ~ for which S~v~ r)E F is taken as the zeroth approximation of the solution of the 
problem (3)-(5). ff such is not known it can be found by solving the problem 

b 

S IL g - -  ui 2 dx--,- min (6) 
cg 

up to the fu l f i l lment  of the conditions (3). The rea l iza t ion  of the p rob l em (6) is  accompl i shed  by the method of 
loca l  va r i a t ions  without l imi ta t ions ,  s t a r t i ng  with an a r b i t r a r y  function v. 

The boundary conditions for  the sp l ines ,  ff they a r e  not known, can be ass igned  in the f o r m  

g'  ( a )=  O; g"  (b) = O, 

which co r r e sponds  to a constant  ini t ial  t e m p e r a t u r e  d is t r ibut ion and an es tab l i shed  t h e r m a l  r e g i m e ,  r e s p e c -  
t ively.  

I t  should be noted that  the p r o b l e m  (3)-(5) uniquely defines a function g" (r),  and the function g' (~) is 
r econs t ruc t ed  with the a c c u r a c y  of a constant  belonging to the se t  F. The convergence of the th i rd  der iva t ive  
of a cubic spline [6] al lows one to e s t i m a t e  the d i sca rded  t e r m s  of the s e r i e s  (1) f r o m  the equations 

[ ' 
Rt~ - 72o U 0,)  - - - - ~  q" (9~) , 

( _ ~ ) 3  [ f ' ' ( 0 1 ) -  / q"(Oz)] 
Rqw=-- l 12-----6-- ~ ' 

where ~ is the distance from the point x* to the boundary of the body at which the temperature t w and heat flux 
qw are reconstructed; 8 i and e 2 are some points out of the time interval under consideration. 

Let us apply the described algorithm for numerical differentiation to the solution of concrete inverse 
boundary problems with constant thermophysical parameters. 

w The uniqueness  of the inve r se  p r o b l e m  for  a plate  xl -< x -- x 2 is specif ied by the values  of the t e m -  
pe r a tu r e  and hea t  flux at  the boundary xl: 

t(x t, x l )= tJ ,  ] = 0 ,  1 . . . . .  k; (7) 

_ ~  at(x,, xj) = q j ,  ] = 0 ,  1 . . . . .  k, (8) 
ax 

with the equal i t ies  (7) and (8) being known with e r r o r s  /x 1 and ~ ,  respec t ive ly .  

To  solve the p rob l em  we use  the solution of the Cauchy p rob l em (1) with x* = xl. 
we obtain f(Tj) = ~ ,  j = 0, 1, . . . .  k ,  on co. 

Thus ,  in the given case  the ope ra t o r  L is of zero th  o rde r .  F r o m  (3), with allowance for  (5), we obtain 
the conditions of affi l iat ion of the function g to the se t  F:  

Ivj-- t~l ~ 8~, ] = 0, I . . . . .  k. (9) 

Consequently,  the functions ~ and fw a re  r econs t ruc t ed  through the solution of the var ia t iona l  p rob l em (4)-(5)- 
(9). The tes t ing of the conditions (9) is e l e m e n t a r y  and, in addition, it is done only at that  grid node at which 
the function v is var ied .  As the zeroth  approximat ion  we take v~ = tj ,  j = 0, 1 . . . . .  k. 

Proceeding  in the same  way for  the equali ty (8), we a r r i ve  at  an analogous var ia t iona l  p rob lem for  the 
function q(r). In this  case  the condition of aff i l iat ion to the se t  F will be 

Ivj--qjl~82j, ] = 0 ,  1 . . . . .  k. (10) 

Substituting (1) into (7), 
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Fig. 1. Var ia t ion of t e m p e r a t u r e  of hea t - supply  sur face  for  di f -  
f e ren t  va r i an t s  of model  p r o b l e m s :  solid curves)  exact  values  of 
tw; points) values  of t w r econs t ruc t ed  through solution of model  
inverse  p r o b l e m s  (5 = 0.05). 

Fig. 2. Var ia t ion of heat  flux through hea t - supply  sur face  for  dif-  
f e ren t  va r i an t s  of model  p r o b l e m s :  solid curves)  exact  va lues  of 
qw; points) va lues  of qw obtained through solution of model  inverse  
p r o b l e m s  (5 = 0.05).  

Thus ,  the unknown values  of the t e m p e r a t u r e  and hea t  flux at  the boundary x 2 a re  

_ _ ~ ~  t([; q, x~, T). (11) 
t w = t ( f ;  q; x 2, ~), qw- -  Ox 

Here  f ' i s  the solution of the var ia t iona l  p rob lem (4)-(5)-(9); ~ is the solution of the p rob l em (4)-(5)-(10). 

w The uniqueness  of the inve r se  boundary p rob lem for  a plate xt -< x -< x2 is specif ied by the va lues  of 
the t e m p e r a t u r e s  a t  in ternal  points of the body: 

t(x 3, -cj)=t~,  ] = 0  . . . . .  k; x ~ x ~ x  2, (12) 

t ( %  ~ ) =  t2~, ] = 0 . . . . .  k; x 3 < x ~ < x  2, (13) 

with e r r o r s  &t and ~2, r espec t ive ly .  Substituting (1) with x* = x 3 into (12) and arguing as  in Sec. 1, we a r r i v e  
a t  a var ia t iona l  p r o b l e m  analogous to (4)-(5)-(9). Le t  f-be the solution of the la t te r ;  then t(f-; q; x, r) together  
with (13) de t e rmines  a s e c o n d - o r d e r  di f ferent ia l  equation re la t ive  to the function q on the grid c~. In this case 
the condition of aff i l iat ion of the function g to the se t  F has  the f o r m  

itS; g; x~, v j ) - - t ~ ! ~ 6 ~ ,  ] = 0  . . . . .  k. (14) 

The conditions (14) mus t  be tes ted  at all  nodes of the grid ~0 with local  var ia t ion  of the function v. The initial  
approximat ion  v ~ of the solution to the p rob l em (4)-(5)-(14) is obtained by solving the p rob lem (6). ff q is the 
solution of the p rob l em  (4)-(5)-(14), then the solution of the inverse  p rob lem is given by Eqs. (11). 

Inve r se  p r o b l e m s  in other  fo rmula t ions  of the conditions of uniqueness can be solved in an analogous way. 

In the examples  cited the boundary of the body at which the t e m p e r a t u r e s  t w and heat  f luexes qw are  r e -  
cons t ruc ted  can move in accordance  with a given law. 

We note that  the p roposed  a lgor i thm for  the approx imate  solution of inverse  boundary p rob l ems  is also 
applicable for  bodies of m o r e  complex shape and for  va r iab le  the rmophys ica l  p a r a m e t e r s .  Fo r  this it is only 
n e c e s s a r y  to de te rmine  the approx imate  solution to the cor responding  Cauchy problem.  And the a lgor i thm for  
the numer i ca l  dif ferent ia t ion r e m a i n s  as  before .  The method for  const ruct ing an approx imate  solution to the 
Cauchy p rob lem for  a plate with va r i ab le  the rmophys ica l  p r o p e r t i e s  is p resen ted  in [4]. 

The desc r ibed  a lgor i thm for  the solution of inve r se  p rob l ems  was rea l i zed  in the ALGOL language for a 
BESM-4M digital computer .  We made  s y s t e m a t i c  calculat ions on the recons t ruc t ion  of the conditions at the 
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Fig. 3. Resul ts of recons t ruc-  
t ion of hea t  flux with d i f ferent  
pe r tu rba t ions  of the initial  data 
(var iant  1): solid line) exac t  v a l -  
ues  of qw;1 )  qw r econs t ruc t ed  
without r egu la r i za t ion  of the de-  
r iva t ive  (5 = 0.05); 2) qw r e c o n -  
s t ruc ted  by the p roposed  a lgor i thm 
(5 = 0.05); 3) the s a m e  for  5 = 0.01; 
4) for  5 = 0 . 1 .  

hea t - supp ly  su r face  of an infinite plate x 1 -< x - x 2 with cons t an t t he rmophys i ca l  p rope r t i e s .  Heat  r e m o v a l  f r o m  
the sur face  x 1 took place by emis s ion .  The heat ing was c a r r i e d  out through heat  supply to the sur face  x 2 with a 
given intensi ty  qw. The p r o b l e m  was  solved in d imens ion less  quant i t ies  by the f in i te -d i f fe rence  method for  a 
constant  init ial  t e m p e r a t u r e  dis t r ibut ion.  

The inverse  p r o b l e m  was  studied in the formula t ion  (7)-(8). The r ight  s ides  of the equat ions ,  which de -  
t e r m i n e  the uniqueness  of the solution of the p r o b l e m ,  were  pe r tu rbed  in accordance  with the equation 

tj = t ~ ( l  + 8@,  i = l . . . . .  N - - 1 .  

Here  ~j is  the exac t  value of the function; ej is  a random quantity un i formly  dis t r ibuted over  the segment  [ - 1 ,  
1]. 

In Figs .  1 and 2 we p r e s e n t  the r e s u l t s  of calculat ions in one of the rea l i za t ions  of the pe r tu rba t ions  of the 
conditions (7)-(8) (6 = 0.05) for  th ree  va r i an t s :  1) qw = Fo; 2) qw = 1; 3) qw = 1 - t w. As is seen ,  there  is 
s a t i s f ac to ry  r econs t ruc t ion  of the t e m p e r a t u r e s  and heat  f luxes at the boundary eve rywhere  except  for  a smal l  
init ial  sect ion fo r  va r i an t s  2 and 3. The l a t t e r  is  evident ly  a consequence of the discontinuity of the hea t - f lux  
function at  the boundary a t  the init ial  t ime.  

F igure  3, in which the r econs t ruc t ed  va lues  of the hea t  flux for  the f i r s t  va r i an t  with di f ferent  5, as well  
as the va lues  of qw obtained without r egu la r i za t ion  of the de r iva t ives ,  a re  p re sen ted  c lea r ly  demons t r a t e s  the 
s tabi l i ty  of the p roposed  a lgor i thm for  the solution of inverse  boundary p r o b l e m s  of heat  conduction. 

The t ime  of calculat ion of one rea l iza t ion  of the inve r se  p rob l em with k = 20 did not exceed  6 min. 
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NOTATION 

is the t e m p e r a t u r e ;  
is the c u r r en t  coordinate;  
is the cu r r en t  t ime ;  
is the coeff icient  of t h e r m a l  diffusivi ty;  
is  the coeff icient  of t he rm a l  conductivity;  
is the number  of nodes of gr id w. 
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A S C H E M E  O F  F R A C T I O N A L  S T E P S  F O R  A N O N S T E A D Y  

I N T E R N A L  C O N J U G A T E  P R O B L E M  O F  H E A T  

T R A N S F E R  IN F L O W  O F  AN I N C O M P R E S S I B L E  L I Q U I D  

W I T H  V A R I A B L E  T H E R M O P H Y S I C A L  P R O P E R T I E S  

B.  E .  K e r t  UDC 536.24 

The conjugate p rob l em  of hea t  t r a n s f e r  dur ing the non s teady l a m i n a r  flow of a v i scous  i ncom-  
p r e s s i b l e  liquid at  the en t rance  sect ion of a plane,  annular ,  o r  cyl indr ical  channel o r  in a closed 
region is d i scussed .  

Fo r  the calculat ion of t rans i t ional  p r o c e s s e s  in the flow of c ryogenic  and h igh - t empe ra tu r e  liquids in 
channels ,  for  the calculat ion of t rans i t iona l  p r o c e s s e s  under  conditions of f ree  and f r e e - f o r c e d  convection in 
channels and c losed reg ions ,  etc.  it is n e c e s s a r y  to c rea te  methods for  the solution of in ternal  conjugate p r o b -  
l e m s  of hea t  exchange allowing for  the nons teadiness  and two-dimens ional i ty  of the p r o c e s s e s  of flow and hea t  
t r a n s f e r  and the t rue  t e m p e r a t u r e  dependence of the p r o p e r t i e s  of the liquid and the wall  m a t e r i a l s .  The appl i -  
cation of analyt ical  methods for  the solut ions of conjugate p rob l ems  in such a formula t ion  is difficult. An econo-  
mica l ,  convergent ,  nonl inear ,  d i f ference  scheme  which approx ima tes  the s ta ted p rob l em is suggested in the 
p r e s e n t  r epor t .  

The nonsteady two-dimens iona l  l a m i n a r  flow of a v iscous  incompress ib le  liquid in a plane,  annular ,  or  
cyl indr ica l  channel is analyzed. The v i scos i ty ,  hea t  capaci ty ,  and t h e r m a l  conductivity of the liquid depend in 
a known way on the t e m p e r a t u r e ,  the densi ty  of the walls  depends on the coordina tes ,  and the heat  capaci ty and 
t h e r m a l  conductivity depend on the coordinates  and the t empe ra tu r e .  Heat  r e l ea se  occu r s  in the channel wails  
and in the liquid. The amount of hea t  r e l e a s e d  pe r  unit t ime pe r  unit m a s s  is a known function of the coordi -  
nates  and t ime.  A m a s s  fo rce ,  which depends on the coord ina tes ,  t ime ,  and the t e m p e r a t u r e  acts  on the liquid. 
The t e m p e r a t u r e  dis t r ibut ion over  the ends and outer  su r faces  of the channel wai ls  is known and v a r i e s  with 
t ime.  The p r e s s u r e  in the channel v a r i e s  continuously and at  the exi t  it equals the p r e s s u r e  of the surrounding 
med ium,  which depends on t ime  in a known way. At the contact  su r faces  between the liquid and the walls a 
coolant is supplied,  the ra te  of inflow of which is known, while the enthalpy depends on the t e m p e r a t u r e  in a 
known way. It  is a s s um ed  that  before  the s t a r t  of the p r o c e s s  a known steady flow of liquid exis ted  in the chan-  
nel with a known t e m p e r a t u r e  dis t r ibut ion for  the liquid and the wai ls .  At the s ta r t ing  t ime some per turba t ion  
of the veloci ty  and t e m p e r a t u r e  is supplied to the en t rance ,  and heat  r e l e a se  and the inflow of coolant begin. 
The nonsteady p r o c e s s  which develops  is analyzed.  The conditions of t e m p e r a t u r e  conjugation a re  se t  up at 
the l i q u i d - w a l l  contact  su r f aces  in the f o r m  of boundary conditions of the fourth kind. To se t  up the boundary 
conditions at the exit  cut of the channel,  s impl i fy ing  assumpt ions  a re  made.  It  is a s sumed  that  the channel is 
long enough, and the coolant supply and the heat  sou rces  a re  concentra ted  in the ent rance  sec t ion ,  so that  the 
flow becomes  one-d imens iona l  nea r  the exit .  It  is a lso  a s sumed  that  the longitudinal heat  f lux, due to the heat  
conduction of the liquid, can be e s t ima ted  and ass igned in the f o r m  of a known function of t ime near  the exit .  
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