USE OF SPLINES IN THE SOLUTION OF INVERSE
BOUNDARY PROBLEMS OF HEAT CONDUCTION
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A stable algorithm is proposed for the solution of one-dimensional inverse boundary problems of
heat conduction based on the solution of the Cauchy problem. The incorrectness of the problem
is eliminated by the use of regularized splines.

Inverse boundary probiems of heat conduction, as is known [1], belong to the class of incorrectly stated
problems. A rather full survey of the publications on the methods of their solution is contained in [2-3]. In the
present report to construct a stable algorithm for the solution of inverse boundary problems we use the sclu-
tion of the Cauchy problem, which for the case of a plate in a linear formulation has the form [4]
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where f and q are functions of the temperature and heat flux, respectively, at the point x*. The latter are as-
sumed to be analytical in their regions of definition. It is easy to show that in this case the solution (1) con~-
verges uniformly in a finite region. Consequently, instability of (1) against small perturbations of the functions
f and g is caused only by the differentiation operator. As is known [2], at points of a body remote from the
heat-transfer surface the temperature and heat flux are represented by smooth functions. We therefore limit
the sums in the solution (1) to three terms (N = 2). Then to obtain a stable approximate solution to an inverse
problem it is sufficient to determine stable algorithms for numerical differentiation of up to second order in-
clusively. We will construct the latter on the basis of the regularization method [1] using spline functions,

Such an approach was discussed in [5]. In the present report we propose a different regularization algorithm,
making it possible to solve inverse problems of heat conduction in various formulations.

Suppose that the function g€ C%[a, b] on the grid
o={a=T1<T<<... <tp="b}
satisfies the equation
Lg=u, (2)

where u is the grid function on w, known with an error A = {60, Bise vy 5k}; L is a differential operator of no
higher than second order.

Let F be a set of functions g€ C%[a, b] satisfying the limits
ILg—ul<<A 3)

on the grid w. Then, in accordance with [1], the regularized solution of the problem of differentiation of the
function g satisfying Eq. (2) will be the element § which minimizes the functional
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in the set F. It is shown in [6] that a cubic spline yields the minimum to the functional € in F, Consequently,
the functions

g =S, 1 ®)
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where the right side is a cubic spline interpolating the grid function v on w, will be subjected to analysis.

As is known, a cubic spline is determined by a system of linear equations with a thi'ee—diagonal matrix,
for the solution of which a very efficient algorithm was presented in [6]. The latter allows one to successfully
realize the variational problem (3)-(5) by the method of local variations with respect to v [7]. The calculation
of the values of the functional 2[g] with allowance for (5) which is required in the process is reduced to the ele-
mentary summation of squares.

Any grid function v? for which S,{v®; T)€ F is taken as the zeroth approximation of the solution of the
problem (3)-(5). If such is not known it can be found by solving the problem
b
5' IL g — ui? dtv—min (6)
a T
up to the fulfillment of the conditions (3). The realization of the problem (6) is accomplished by the method of
local variations without limitations, starting with an arbitrary function v.
The boundary conditions for the splines, if they are not known, can be assigned in the form
g@=0; g"@)=0,

which corresponds to a constant initial temperature distribution and an established thermal regime, respec-
tively.

It should be noted that the problem (3)-(5) uniquely defines a function g"(7), and the function g'(7) is
reconstructed with the accuracy of a constant belonging to the set F, The convergence of the third derivative
of a cubic spline [6] allows one to estimate the discarded terms of the series (1) from the equations
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where ! is the distance from the point x* to the boundary of the body at which the temperature t and heat flux
gw are reconstructed; 8; and 6, are some points out of the time interval under consideration.

Let us apply the described algorithm for numerical differentiation to the solution of concrete inverse
boundary problems with constant thermophysical parameters.

§1, The uniqueness of the inverse problem for a plate x; = x = x, is specified by the values of the tem-~
perature and heat flux at the boundary x;:

txy, )=t j=0 1, ..., & o
3 (xy 1 .
-—x—%i)—=qj. i=0, 1, ...,k ®

with the equalities (7) and (8) being known with errors A; and 4, respectively.

To solve the problem we use the solution of the Cauchy problem (1) with x*=x;. Substituting (1) into (7),
we obtain £(7j) =tj j=0,1,... ,k, onw,

Thus, in the given case the operator L is of zeroth order. From (3), with allowance for (5), we obtain
the conditions of affiliation of the function g to the set F:

lvj_ j[<6u‘v j=0, I, ..., k. (9)

Consequently, the functions f' and f* are reconstructed through the solution of the variational problem (4)-(5)-
(9). The testing of the conditions (9) is elementary and, in addmon, it is done only at that grid node at which
the function v is varied. As the zeroth approximation we take v = t ,j=0,1,..., k.

Proceeding in the same way for the equality (8), we arrive at an analogous variational problem for the
function q(7). In this case the condition of affiliation to the set F will be

0, — ] <8y i=01,...,k (10
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Fig. 1. Variation of temperature of heat-supply surface for dif-
ferent variants of model problems: solid curves) exact values of
tw; points) values of t, reconstructed through solution of model
inverse problems (5 = 0,05).

Fig, 2. Variation of heat flux through heat-supply surface for dif-
ferent variants of model problems: solid curves) exact values of
Qw; points) values of gy, obtained through solution of model inverse
problems (6 = 0.05),

Thus, the unknown values of the temperature and heat flux at the boundary x; are

_ 3 — -
Ly =t 0 Xp T G = ~—7»6—x th g X T)- (i1

Here f is the solution of the variational problem (4)-(5)-(9); q is the solution of the problem (4)-(5)-(10).

§2. The uniqueness of the inverse boundary problem for a plate x; = x = x, is specified by the values of
the temperatures at internal points of the body:

Hrp 1) =1y =0 ... & X, <Tx<lhy (12)
t(xkv TJ') == tzj» ]= 0, ..., k; Xy < X, < Xy, (13)
with errors A; and A,, respectively. Substituting (1) with x* = x5 into (12) and arguing as in Sec. 1, we arrive
at a variational problem analogous to (4)-(5)-(9). Let f be the solution of the latter; then t(; q; x, 7) together
with (13) determines a second-order differential equation relative to the function ¢ on the grid w. 1In this case
the condition of affiliation of the function g to the set F has the form

It (7; g X T])'-'tzjl <621, ]: 0, ey k. (14)

The conditions (14) must be tested at all nodes of the grid w with local variation of the function v. The initial
approximation v® of the solution to the problem (4)-(5)-(14) is obtained by solving the problem (6). H g is the
solution of the problem (4)-(5)-(14), then the solution of the inverse problem is given by Egs. (11}.

Inverse problems in other formulations of the conditions of uniqueness can be solved in an analogous way.

In the examples cited the boundary of the body at which the temperatures ty and heat fluexes g, are re~
constructed can move in accordance with a given law,

We note that the proposed algorithm for the approximate solution of inverse boundary problems is also
applicable for bodies of more complex shape and for variable thermophysical parameters. For this it is only
necessary to determine the approximate solution to the corresponding Cauchy problem. And the algorithm for
the numerical differentiation remains as before, The method for constructing an approximate solution to the
Cauchy problem for a plate with variable thermophysical properties is presented in [4].

The described algorithm for the solution of inverse problems was realized in the ALGOL language for a
BESM-4M digital computer. We made systematic calculations on the reconstruction of the conditions at the
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Fig. 3. Results of reconstruc-
tion of heat flux with different
perturbations of the initial data
(variant 1): solid line) exact val-
ues of qy; 1) gy, reconstructed
without regularization of the de~-
rivative (6 = 0.05); 2) qy, recon-
structed by the proposed algorithm
(0 = 0.05); 3) the same for 6 = 0.01;
4) for 6 = 0.1,

heat-supply surface of an infinite plate x; = x = x, with constantthermophysical properties. Heat removal from
the surface x; took place by emission. The heating was carried out through heat supply to the surface x, with a
given intensity qy. The problem was solved in dimensionless quantities by the finite-difference method for a
constant initial temperature distribution.

The inverse problem was studied in the formulation (7)-(8). The right sides of the equations, which de~
termine the uniqueness of the solution of the problem, were perturbed in accordance with the equation

tj=—ij(l+68j), j=1,.--, N-—'l.

Here 1:—J is the exact value of the function; £j is a random quantity uniformly distributed over the segment {—1,
1.

In Figs. 1 and 2 we present the results of calculations in one of the realizations of the perturbations of the
conditions (7)-(8) (6 = 0.05) for three variants: 1) gy = Fo; 2) gy = 1; 3) g =1 — t. As is seen, there is
satisfactory reconstruction of the temperatures and heat fluxes at the boundary everywhere except for a small
initial section for variants 2 and 3. The latter is evidently a consequence of the discontinuity of the heat-flux
function at the boundary at the initial time.

Figure 3, in which the reconstructed values of the heat flux for the first variant with different 6, as well
as the values of gy obtained without regularization of the derivatives, are presented clearly demonstrates the
stability of the proposed algorithm for the solution of inverse boundary problems of heat conduction.

The time of calculation of one realization of the inverse problem with k = 20 did not exceed 6 min.

NOTATION

is the temperature;

is the current coordinate;

is the current time;

is the coefficient of thermal diffusivity;

is the coefficient of thermal conductivity;
+1 is the number of nodes of grid w.
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A SCHEME OF FRACTIONAL STEPS FOR A NONSTEADY
INTERNAL CONJUGATE PROBLEM OF HEAT
TRANSFER IN FLOW OF AN INCOMPRESSIBLE LIQUID
WITH VARIABLE THERMOPHYSICAL PROPERTIES

B. E. Kert UDC 536.24

The conjugate problem of heat transfer during the non steady laminar flow of a viscous incom-
pressible liquid at the entrance section of a plane, annular, or cylindrical channel or in a closed
region is discussed.

For the calculation of transitional processes in the flow of cryogenic and high-temperature liquids in
channels, for the calculation of fransitional processes under conditions of free and free—forced convection in
channels and closed regions, etc. it is necessary to create methods for the solution of internal conjugate prob-
lems of heat exchange allowing for the nonsteadiness and two-dimensionality of the processes of flow and heat
transfer and the true temperature dependence of the properties of the liquid and the wall materials, The appli-
cation of analytical methods for the solutions of conjugate problems in such a formulation is difficult. An econo-
mical, convergent, nonlinear, difference scheme which approximates the stated problem is suggested in the
present report.

The nonsteady two-dimensional laminar flow of a viscous incompressible liquid in a plane, annular, or
cylindrical channel is analyzed. The viscosity, heat capacity, and thermal conductivity of the liquid depend in
a known way on the temperature, the density of the walls depends on the coordinates, and the heat capacity and
thermal conductivity depend on the coordinates and the temperature. Heat release occurs in the channel wallg
and in the liquid. The amount of heat released per unit time per unit mass is a known function of the coordi-
nates and time. A mass force, which depends on the coordinates, time, and the temperature acts on the liquid,
The temperature distribution over the ends and outer surfaces of the channel walls is known and varies with
time. The pressure in the channel varies continuously and at the exit it equals the pressure of the surrounding
medium, which depends on time in a known way. At the contact surfaces between the liquid and the walls a
coolant is supplied, the rate of inflow of which is known, while the enthalpy depends on the temperature in a
known way. It is assumed that before the start of the process a known steady flow of liquid existed in the chan~
nel with a known temperature distribution for the liquid and the walls. At the starting time some perturbation
of the velocity and temperature is supplied to the entrance, and heat release and the inflow of coolant begin.
The nonsteady process which develops is analyzed. The conditions of temperature conjugation are set up at
the liquid—wall contact surfaces in the form of boundary conditions of the fourth kind. To set up the boundary
conditions at the exit cut of the channel, simplifying agsumptions are made. It is assumed that the channel is
long enough, and the coolant supply and the heat sources are concentrated in the entrance section, so that the
flow becomes one-dimensional near the exit. It is also assumed that the longitudinal heat flux, due to the heat
conduction of the liquid, can be estimated and assigned in the form of a known function of time near the exit.
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